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Abstract—The Deep Space Network (DSN) is an 
international network of antennas that supports all of 
NASA’s deep space missions. With the increasing demand 
of tracking time, DSN is highly over-subscribed. Therefore, 
the allocation of the DSN resources should be optimally 
scheduled to satisfy the requirements of as many missions 
as possible. Currently, the DSN schedules are manually and 
iteratively generated through several meetings to resolve 
conflicts. In an attempt to ease the burden of the DSN 
scheduling task, we have applied evolutionary 
computational techniques to the DSN scheduling problem. 
These methods provide a decision support system by 
automatically generating a population of optimized 
schedules under varying conflict conditions. These 
schedules are used to decide the simplest path to resolve 
conflicts as new scheduled items are added or changed 
along the scheduled 26 weeks.12 
 
This paper presents the specific approach taken to formulate 
the problem in terms of gene encoding, fitness function, and 
genetic operations. The genome is encoded such that a 
subset of the scheduling constraints is automatically 
satisfied. Several fitness functions are formulated to 
emphasize different aspects of the scheduling problem. The 
optimal solutions of the different fitness functions 
demonstrate the trade-off of the scheduling problem and 
provide insight into a conflict resolution process. 
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1. INTRODUCTION 

The Deep Space Network (DSN) is a collection of radio 
antennas and their support hardware, software, and 
personnel. Its primary function is to connect spacecraft with 
their controllers at JPL and JPL’s partners. The DSN 
network consists of three communication facilities spaced 

1                                                           
1 1-4244-0525-4/07/$20.00 ©2007 IEEE 
2 IEEEAC paper #1210, Version 2, Updated December 6, 2006 

by 120 degrees (in longitude) from each other: the 
Goldstone Deep Space Communications Complex in 
California, the Madrid Deep Space Communications 
Complex in Spain and the Camberra Deep Space 
Communications Complex in Australia. This strategic 
placement permits constant observation of spacecraft as the 
Earth rotates. There are over 16 antennas in DSN to support 
about 30 missions. Allocating these resources to support the 
missions is a basic DSN scheduling problem.  There are 
many constraints to this scheduling problem. For example, a 
mission can only be seen during certain period of time at 
each antenna. We call this period of time view period. This 
is related to the location of the antenna and spacecraft 
trajectory. There are other types of constraints such as 
equipment conflict, radio frequency interference, and work 
crew availability. Besides single resource for single mission, 
DSN also supports single resource for multiple spacecraft 
and multiple resources for single mission. Roughly 
speaking, there are about 500 schedule items in a week. 
DSN normally performs hundreds of changes for each 
week. DSN scheduling is a dynamic and continuous 
environment where changes constantly occur [1][2]. 
Everything from calculating where to point the antennas to 
the spacecraft tracking operations starts with an official 
DSN schedule. Mission operations cannot be successful 
without appropriate time reservations in the schedule. With 
increasing demand of tracking support from missions, DSN 
is currently over-subscribed.  In order to make the best use 
of the DSN resources, optimally allocating resources 
becomes an important issue. We propose an evolutionary 
computing approach to use Genetic Algorithm (GA) to 
optimize the DSN schedule. Based on the simulation results, 
the GA approach we are taking can reduce overall number 
of schedule conflicts and produce a more efficient schedule. 

2. CURRENT DSN SCHEDULING PROCEDURE 

DSN scheduling involves multiple users with various types 
of communication needs. This includes ground-based 
science activities and spacecraft tracking. Each user and 
activity has its unique needs and requirements. There are 
three steps in the DSN planning: long-range planning, mid-
range scheduling, and near-real-time scheduling. Long-
range planning is from 1 year to more than 10 years from 
now. In this timeframe, DSN forecasts future loads of the 
network and determines the supportability level for each 
mission. Mid-range scheduling is from 8 weeks to 1 year. In 
this stage, initial schedule is generated based on the user 
requirements negotiated in the long-range planning. Then 
detailed negotiations start to eliminate conflicts in the 
schedule. DSN schedulers coordinate the change activities 
and resolve DSN conflicts. Project/mission schedulers are 
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working with each other to come up with a solution 
proposal. Through proposal exchange and meetings, a 
virtually conflict-free schedule is generated toward the end 
of this process interval. Near-real-time scheduling then 
starts around 8-week boundary. It is within this time frame 
that schedules are prepared to be ready for real-time 
operation. DSN schedulers continue to negotiate with 
project schedulers and handle contingencies through out the 
process toward real-time.  
 
There are two major scheduling issues in the mid-range and 
near-real-time scheduling area: one is to generate an initial 
schedule and the other one is to resolve conflicts when they 
occur. In the current process, they are both labor-intensive. 
Generating a feasible schedule is difficult. Generating an 
optimal schedule is almost impossible. There is a large 
number of combinations for allocations in a normal case 
(such as 500 tracks in 16 antennas for a week). Human can 
only try out certain amount of solutions based on her or his 
experience. A normal computer may take months if not 
years to explore all scheduling possibilities. Therefore an 
optimization algorithm with reasonable turn around time is 
preferred in this situation.  

3. OPTIMIZATION WITH A GENETIC ALGORITHM 

When all the requirements have been centralized, the 
establishment of the schedule is equivalent to an 
optimization problem with multiple constraints and 
objectives. There are several efficient numerical techniques 
to solve these kinds of problems: genetic algorithms, 
simulated annealing, hill climbing, etc… Several reasons 
motivated our choice of technique. First, over the years, 
genetic algorithms have been used with great success to 
explore complex search spaces and have demonstrated 
human competitive improvement over conventional 
methods [3]. Secondly, this technique is well suited to solve 
scheduling problems [4]. Finally, we have both the expertise 
in genetic algorithms and the knowledge of the DSN 
operation. In this work, we present an evolutionary 
approach to the scheduling problem of the Deep Space 
Network. 
 
We first construct the genome with the essential 
characteristics of the forecast week. Each task is 
characterized by an identification number, a duration, a set 
up and tear down period and schedulable intervals (view 
periods). The algorithm looks for candidate solutions 
(schedules) among the different view periods. In this case, 
the gene is simply an integer number (in minute) chosen 
randomly between zero and the sum of all view periods. A 
tracking number is assigned to each period so that when a 
random number is chosen within the interval, it can be 
traced back to a given schedulable interval. In other words, 
this tracking number assures the mapping between the 
phenotype and the genotype. There are typically about 500 
tasks. As a first step towards establishing an efficient 
scheduling tool for the Deep Space Network, we only 
consider single events, e.g. disregard events involving 
several, either, antennas (antenna arraying) or spacecrafts 
(Multiple Spacecraft Per Antenna, MSPA). There are 
usually 140 of those normal tasks that also possess 
schedulable intervals. Each chromosome has therefore 

around 140 genes. There are usually up to 50 different 
schedulable intervals for each of these tasks. 
 
Before further discussing the specifics of the genetic 
algorithm, we describe the implementation details as the 
optimization of the algorithm was greatly influenced by it. 
In order to use the existing infrastructure, we use a 
dedicated web service located at JPL. The public interface 
to this service is achieved through a WSDL, or Web 
Services Description Languages. The SOAP protocol is 
used to exchange XML files between the users and the 
service. The genetic algorithm is coded in C/C++. We used 
the gSOAP toolkit to bind the XML data to a C++ structure. 
So the genetic algorithm run on a client machine that make 
conflict calls to the server at each iteration. Using the DSN 
framework has the advantage that our code could readily be 
inserted into the current DSN schedule tools. However, 
having the computation and the conflict check performed at 
two different points introduce a serious overhead as 
approximately two thirds of each iteration is spent in 
communication. 
 
Each solution should fulfill numerous scheduling 
objectives: 1) maximize the number of tasks without 
conflicts, 2) maximize the mission coverage, 3) minimize 
the number of conflicts, 4) minimize schedule items 
overlaps. We initially built different fitness functions for 
each objective. We then implemented a multi-objective 
approach by simply building a fitness function as a linear 
combination of different objectives. This allows us to fine 
tune the fitness function by adjusting the relative weights of 
each component. The number of tasks without conflict is 
obtained by subtracting the number of tasks with conflicts 
from the number of tasks in the corresponding schedule. 
The total mission coverage is obtained by adding the 
duration of each task without conflict. The number of 
conflicts is given by the sum of the number of conflicts 
from each task. Note that a task can have more than one 
conflict so the number of conflicts is different from the 
number of tasks with conflicts. Overlaps are determined by 
the number of so-called facility conflicts which indicates 
that more than one mission are assigned to the same 
antenna/facility in some time period. 
 
The program starts by requesting the current forecast week, 
which is the schedule for the coming week that has been 
optimized by the DSN scheduling team. Most of the time, 
the forecast week is therefore conflict free. The 
performance of our code can be simply evaluated by 
comparing our solution to this original solution. The initial 
population is chosen, as is customary in genetic algorithms, 
by randomly picking the genes in the pool of possible 
solutions (schedulable intervals). 
 
We also implemented an evolution strategy for the mutation 
step. Each gene starts with a different mutation step size 
which is determined by 10 percent of the range of the gene. 
As the number of generations increases, the size of the 
mutation step decreases linearly We introduced this scheme 
in order to explore the search space efficiently at the 
beginning of the evolution process and to fine-tune the 
search step as the solution gets close to the ideal solution.  
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4. RESULTS 

We present the results obtained from the forecast for the 
second week of October, 2006. There were 412 tasks for 
this week among which 153 were normal with schedulable 
intervals. The fitness of the initial schedule was evaluated 
before the initialization of the genetic algorithm. There were 
343 tasks without conflict, 10.5 week mission coverage, 706 
conflicts and 0 facility conflicts. These values are indicated 
with a red horizontal line as a reference on Figure 1 to 
Figure 4 (which correspond to objective 1) to 4) 
respectively): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
For this optimization problem, we have made a single 
objective out of the four objectives listed in the section 3 
with the relative weights of the four objectives being one 1 
for objective 1), 2 for objective 2), 1 for objective 3) and 8 
for objective 4). We chose these weights for different 
reasons. First, we discovered over the course of our study 
that minimizing the number of overlaps was the hardest 
objective to fulfill which explains the relatively high 
weight. Then, we gave the remaining weights equal 
importance as an initial guess. However, objective 1) and 3) 
are calculated with partly common information, which 
explains why the weight of objective 2) is equal to the sum 
of their weights. We used genetic algorithm parameters as 
follows. The population size was 500, the replaced 
population size for each generation 300, the mutation rate 
0.02, the crossover probability 0.7 and the maximum 
number of generation 500 . We used a binary tournament 
parent selection scheme with 0.9 probability and a two-
point crossover for the recombination operator. We chose a 

Figure 4: Evolution of objective 4) with the 
number of generations. The red line indicates the 
fitness of the initial schedule, equal to 0 overlap. 

Figure 2: Evolution of objective 2) with the 
number of generations. The red line indicates the 
fitness of the initial schedule, equal to 10.5 week. 

Figure 3: Evolution of objective 3) with the 
number of generations. The red line indicates the 
fitness of the initial schedule, equal to 706 
conflicts.

Figure 1: Evolution of objective 1) with the number 
of generations. The red line indicates the fitness of 
the initial schedule, equal to 343 tasks without 
conflict.
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Gaussian mutation operator with a mutation step that 
increased linearly with the number of generation, starting at 
10% of the upper bound defining a gene.  
 
The genetic algorithm clearly outperforms the initial 
schedule for three of the four objectives, as seen on Figure 1 
to Figure 3. However, even though the relative weight for 
the minimization of the number of overlaps is eight times 
higher than the other objectives, the number of overlaps is 
still higher (18) than the initial solution (0) after 700 
generations (see Figure 4). It is also worth noticing that one 
overlap between a given task i and task j appears as two 
overlaps in our count (task i with task j, and task j with task 
i). So, there are really 9 facility conflicts in the solution at 
the 700th generation. Moreover, the program really operates 
according to the few rules we described. In reality, 
exceptions to these rules are used for human operations to 
permit some flexibility and resolve conflicts. For instance, 
some artificial tasks may be used by schedulers to fill in the 
gaps and thus minimize the number of gaps between tasks. 
 
We allowed the program to restart after 10 generations if no 
progress was made. To confirm the utility and efficiency of 
this process, we computed the diversity of the population 
for different generations. There is no single measure for the 
diversity. For a given generation, we calculated the distance 
D defined as followed: 
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where xp,i is the gene i of the individual p. The diversity is 
therefore expressed here in minutes. Npop represents the 
number of individuals in a population and Ng the number of 
genes. We implemented this change on a subsequent run 
with the same initial forecast week but with different 
relative weights (1, 2, 1, 16 respectively). The results were 
somewhat comparable for the first three objectives but 
worst for objective 4). The number of tasks without conflict 
is shown along with the diversity on Figure 5Error! 
Reference source not found.. We chose a higher mutation 
probability of 0.05 for the restart process. As indicated by 
the finite slope after the first three spikes, the restart process 
is indeed efficient at improving the objective further. 
Moreover, for this specific objective, 1), the two first 
restarts allow the algorithm to find a better solution than the 
initial forecast week (indicated by a red line on Error! 
Reference source not found.). Logically, we found with 
other experiments that the height of the peak indicating a 
restart, was proportional to the restart probability. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. FUTURE PROSPECTS AND IMPROVEMENTS 

The results we show on Figure 1 to Figure 4, were the best 
we obtained with this method for a single objective. Beside 
the variation of the different parameters to optimize the 
program, we tested our method with different forecast 
weeks. To our surprise, we observed a spread in 
performances. Most of the time, the program could reach 
and beat the initial solution of the forecast week for the 
three objectives 1), 2) and 3). However, some other times, 
the program did not reach any of the four objectives 
calculated for the initial solution. More than the difference 
in missions from one week to the other, we think this fact 
emphasizes the importance of other objectives and 
constraints, and the need for human input to resolve in a 
non-systematic fashion some hard conflicts. 
 
There are many improvements possible. Since the time to 
perform a simulation was mostly spent in communication 
between the client and the server, a substantial amount of 
time (about two thirds) could be gained by moving the 
conflict check on the same machine that is running the 
program. For this work we used a mutation step that was 
calculated with respect to the upper bound of the gene. 
However, it is possible to achieve the same upper bound of 
the genes, e.g. the same sum of all schedulable intervals, 
with two different series of schedulable intervals. The sum 
of a few intervals can be equal to the sum of more, but 
smaller intervals. A percentage doesn’t capture this 
possibility. Since this program is supposed to, at least, 
mimic the current scheduling process, and at most propose 
alternative solutions, it would be logical to include most of 
the constraints and objectives currently used.  
 
We currently convert a multiple objective problem to a 
single objective problem by weighting the multiple 
objectives. The multiple objectives often compete with each 

Figure 5: Diversity (purple curve) and number of 
tasks without conflict (black curve) versus the 
number of generations. The red line indicates the 
fitness of the initial schedule, equal to 343 tasks 
without conflict. 
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other, which means that improving one objective is 
accompanied by degrading other objectives. In such a 
situation, the optimization problem leads to multiple optimal 
solutions that demonstrate a trade-off between different 
objectives rather than one single best solution that optimizes 
all the objectives. Several algorithms are available for the 
multi-objective optimization problem and can be easily 
implemented into our evolutionary computing framework. 

6. CONCLUSION 

We proposed an evolutionary computational method to help 
the scheduling process of the Deep Space Network. Using a 
single objective approach, we were able to consistently 
obtain solutions that would improve the current best 
solution for three out of the four used objectives. We want 
to emphasize that our results are obtained in one run from a 
totally random population, whereas given DSN forecast 
weeks are obtained from a limited number of changes made 
in a mostly conflict-free schedule from the preceding week. 
Considering, the proximity of our solution to the ideal 
solution, in the last objective (minimizing the number of 
facility conflicts), our program already constitutes a 
potentially valuable tool for the DSN scheduling process. 
Moreover, with the performances on the first three 
objectives, we have a lot of leeway to make tradeoffs 
between objectives and therefore we will most likely be 
able to satisfy all four objectives used in this paper, when 
we implement a multi-objective approach. For this reason, 
we are optimistic that we will be able to propose a tool in 
the near future that will both improve the quality of the 
current schedule and generate alternative schedules meeting 
most of the requirements.  
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